Agilent Cary UV-Vis-NIR Spectrophotometer

1. Agilent Cary UV-Vis-NIR Spectrophotometer

Function: This is a high-performance spectrophotometer designed for measuring the absorbance, transmission, and reflection of samples across a broad spectral range, encompassing ultraviolet (UV), visible (Vis), and near-infrared (NIR) light, typically from 175 to 3300 nm.

Applications: It's widely used in materials science, life sciences, and other research areas for applications like thin film analysis, optical property measurements, and nanomaterial research.

Key Features: It boasts superior photometric performance, a wide dynamic range, and the ability to measure beyond 8.0 absorbance units, especially with reference beam attenuation. The modular Cary WinUV software provides control and analysis capabilities.

2. Newport RS 2000 Optical Table

Function: The RS 2000 is a research-grade optical table known for its exceptional vibration immunity and stability, crucial for sensitive optical experiments like those conducted with a UV-Vis-NIR spectrophotometer.

Design & Damping: It features a constrained layer core, a damped working surface, and a composite edge finish for broadband damping. Crucially, it incorporates two precision-tuned dampers to eliminate fundamental structural table modes and their harmonics, a technique called Tuned Mass Damping (TMD).

Features: Other features include a super-rigid trussed honeycomb core, vertically bonded triple core interfaces for enhanced stiffness, individually sealed mounting holes for cleanliness and integrity, and highly damped side panels to minimize external vibrations.

How to Use?

Sample Preparation: Place the sample in a cuvette (a small transparent container).

Loading: Insert the cuvette into the sample holder inside the spectrophotometer.

Setup: Use the connected computer to configure the scan parameters (e.g., wavelength range).

Measurement: The instrument shines light through the sample and measures absorbance or transmittance at each wavelength.

Analysis: The software displays a spectrum, which can be analyzed to determine properties like concentration, purity, or molecular structure.

How to Set-Up and Perform a Scan

1. Power On and Launch Software

- Turn on the spectrophotometer and the connected computer.
- Launch the Cary WinUV software (or the appropriate control software).

2. Select Scan Mode

- In the software, choose Scan or Spectrum Mode depending on your analysis needs.
- You can also choose Absorbance, Transmittance, or Reflectance depending on what you're measuring.

3. Configure Scan Parameters

Set the following:

- Wavelength Range: e.g., 200–800 nm for UV-Vis, or up to 3300 nm for NIR.
- Data Interval: e.g., 1 nm steps.
- Scan Rate: e.g., medium or fast depending on sample stability.
- Baseline Correction: usually done with a blank cuvette.

4. Prepare and Load Sample

- Fill a quartz cuvette with your sample.
- Clean the cuvette to avoid contamination or scattering.
- Place it in the **sample holder** inside the spectrophotometer.

5. Run Blank Scan

- Insert a cuvette with solvent or blank solution.
- Run a baseline scan to zero out background absorbance.

6. Run Sample Scan

- Replace the blank with your sample.
- Click Start Scan in the software.
- The system will record absorbance/transmittance across the selected wavelength range.

7. Analyze Results

- View the spectrum graph.
- Use software tools to:
 - o Identify peaks.
 - o Calculate concentration (using Beer-Lambert Law).
 - o Export data for further analysis.